操作系统

本文最后更新于:2021年3月1日 下午

操作系统简介

1.解释一下什么是操作系统

操作系统是运行在计算机上最重要的一种软件,它管理计算机的资源和进程以及所有的硬件和软件。它为计算机硬件和软件提供了一种中间层,使应用软件和硬件进行分离,让我们无需关注硬件的实现,把关注点更多放在软件应用上。

2.操作系统的主要功能

一般来说,现代操作系统主要提供下面几种功能

  • 进程管理: 进程管理的主要作用就是任务调度,在单核处理器下,操作系统会为每个进程分配一个任务,进程管理的工作十分简单;而在多核处理器下,操作系统除了要为进程分配任务外,还要解决处理器的调度、分配和回收等问题
  • 内存管理:内存管理主要是操作系统负责管理内存的分配、回收,在进程需要时分配内存以及在进程完成时回收内存,协调内存资源,通过合理的页面置换算法进行页面的换入换出
  • 设备管理:根据确定的设备分配原则对设备进行分配,使设备与主机能够并行工作,为用户提供良好的设备使用界面。
  • 文件管理:有效地管理文件的存储空间,合理地组织和管理文件系统,为文件访问和文件保护提供更有效的方法及手段。
  • 提供用户接口:操作系统提供了访问应用程序和硬件的接口,使用户能够通过应用程序发起系统调用从而操纵硬件,实现想要的功能。

3.软件访问硬件的几种方式

软件访问硬件其实就是一种 IO 操作,软件访问硬件的方式,也就是 I/O 操作的方式有哪些。

硬件在 I/O 上大致分为并行和串行,同时也对应串行接口和并行接口。

随着计算机技术的发展,I/O 控制方式也在不断发展。选择和衡量 I/O 控制方式有如下三条原则

(1) 数据传送速度足够快,能满足用户的需求但又不丢失数据;

(2) 系统开销小,所需的处理控制程序少;

(3) 能充分发挥硬件资源的能力,使 I/O 设备尽可能忙,而 CPU 等待时间尽可能少。

根据以上控制原则,I/O 操作可以分为四类

  • 直接访问:直接访问由用户进程直接控制主存或 CPU 和外围设备之间的信息传送。直接程序控制方式又称为忙/等待方式。
  • 中断驱动:为了减少程序直接控制方式下 CPU 的等待时间以及提高系统的并行程度,系统引入了中断机制。中断机制引入后,外围设备仅当操作正常结束或异常结束时才向 CPU 发出中断请求。在 I/O 设备输入每个数据的过程中,由于无需 CPU 的干预,一定程度上实现了 CPU 与 I/O 设备的并行工作。

    • 上述两种方法的特点都是以 CPU 为中心,数据传送通过一段程序来实现,软件的传送手段限制了数据传送的速度。接下来介绍的这两种 I/O 控制方式采用硬件的方法来显示 I/O 的控制
  • DMA 直接内存访问:为了进一步减少 CPU 对 I/O 操作的干预,防止因并行操作设备过多使 CPU 来不及处理或因速度不匹配而造成的数据丢失现象,引入了 DMA 控制方式。

  • 通道控制方式:通道,独立于 CPU 的专门负责输入输出控制的处理机,它控制设备与内存直接进行数据交换。有自己的通道指令,这些指令由 CPU 启动,并在操作结束时向 CPU 发出中断信号。

4.为什么 Linux 系统下的应用程序不能直接在 Windows 下运行

(1)Linux 系统和 Windows 系统的格式不同。Linux 下的可执行程序文件格式是 elf,而 Windows 下的可执行程序是 PE 格式,它是一种可移植的可执行文件。

(2)Linux 系统和 Windows 系统的 API 不同,这个 API 指的就是操作系统的 API,Linux 中的 API 被称为系统调用,是通过 int 0x80 这个软中断实现的。而 Windows 中的 API 是放在动态链接库文件中的,也就是 Windows 开发人员所说的 DLL ,这是一个库,里面包含代码和数据。Linux 中的可执行程序获得系统资源的方法和 Windows 不一样,所以显然是不能在 Windows 中运行的。

5.操作系统结构

(1)单体系统

在大多数系统中,整个系统在内核态以单一程序的方式运行。整个操作系统是以程序集合来编写的,链接在一块形成一个大的二进制可执行程序,这种系统称为单体系统。

在单体系统中构造实际目标程序时,会首先编译所有单个过程(或包含这些过程的文件),然后使用系统链接器将它们全部绑定到一个可执行文件中

在单体系统中,对于每个系统调用都会有一个服务程序来保障和运行。需要一组实用程序来弥补服务程序需要的功能,例如从用户程序中获取数据。可将各种过程划分为一个三层模型

img

除了在计算机初启动时所装载的核心操作系统外,许多操作系统还支持额外的扩展。比如 I/O 设备驱动和文件系统。这些部件可以按需装载。在 UNIX 中把它们叫做 共享库(shared library),在 Windows 中则被称为 动态链接库(Dynamic Link Library,DLL)。他们的扩展名为 .dll,在 C:\Windows\system32 目录下存在 1000 多个 DLL 文件,所以不要轻易删除 C 盘文件,否则可能就炸了哦。

(2)分层系统

分层系统使用层来分隔不同的功能单元。每一层只与该层的上层和下层通信。每一层都使用下面的层来执行其功能。层之间的通信通过预定义的固定接口通信。

img

(3)微内核

为了实现高可靠性,将操作系统划分成小的、层级之间能够更好定义的模块是很有必要的,只有一个模块 —- 微内核 —- 运行在内核态,其余模块可以作为普通用户进程运行。由于把每个设备驱动和文件系统分别作为普通用户进程,这些模块中的错误虽然会使这些模块崩溃,但是不会使整个系统死机。

MINIX 3 是微内核的代表作,它的具体结构如下

img

在内核的外部,系统的构造有三层,它们都在用户态下运行,最底层是设备驱动器。由于它们都在用户态下运行,所以不能物理的访问 I/O 端口空间,也不能直接发出 I/O 命令。相反,为了能够对 I/O 设备编程,驱动器构建一个结构,指明哪个参数值写到哪个 I/O 端口,并声称一个内核调用,这样就完成了一次调用过程。

(4)客户-服务器模式

微内核思想的策略是把进程划分为两类:服务器,每个服务器用来提供服务;客户端,使用这些服务。这个模式就是所谓的 客户-服务器模式。

客户-服务器模式会有两种载体,一种情况是一台计算机既是客户又是服务器,在这种方式下,操作系统会有某种优化;但是普遍情况下是客户端和服务器在不同的机器上,它们通过局域网或广域网连接。

img

客户通过发送消息与服务器通信,客户端并不需要知道这些消息是在本地机器上处理,还是通过网络被送到远程机器上处理。对于客户端而言,这两种情形是一样的:都是发送请求并得到回应。

6.为什么称为陷入内核

如果把软件结构进行分层说明的话,应该是这个样子的,最外层是应用程序,里面是操作系统内核。

img

应用程序处于特权级 3,操作系统内核处于特权级 0 。如果用户程序想要访问操作系统资源时,会发起系统调用,陷入内核,这样 CPU 就进入了内核态,执行内核代码。至于为什么是陷入,我们看图,内核是一个凹陷的构造,有陷下去的感觉,所以称为陷入。

7.什么是用户态和内核态

用户态和内核态是操作系统的两种运行状态。

  • 内核态:处于内核态的 CPU 可以访问任意的数据,包括外围设备,比如网卡、硬盘等,处于内核态的 CPU 可以从一个程序切换到另外一个程序,并且占用 CPU 不会发生抢占情况,一般处于特权级 0 的状态我们称之为内核态。
  • 用户态:处于用户态的 CPU 只能受限的访问内存,并且不允许访问外围设备,用户态下的 CPU 不允许独占,也就是说 CPU 能够被其他程序获取。

那么为什么要有用户态和内核态呢?

这个主要是访问能力的限制的考量,计算机中有一些比较危险的操作,比如设置时钟、内存清理,这些都需要在内核态下完成,如果随意进行这些操作,那你的系统得崩溃多少次。

8.用户态和内核态是如何切换的?

所有的用户进程都是运行在用户态的,但是我们上面也说了,用户程序的访问能力有限,一些比较重要的比如从硬盘读取数据,从键盘获取数据的操作则是内核态才能做的事情,而这些数据却又对用户程序来说非常重要。所以就涉及到两种模式下的转换,即用户态 -> 内核态 -> 用户态,而唯一能够做这些操作的只有 系统调用,而能够执行系统调用的就只有 操作系统

一般用户态 -> 内核态的转换我们都称之为 trap 进内核,也被称之为 陷阱指令(trap instruction)

他们的工作流程如下:

img

  • 首先用户程序会调用 glibc 库,glibc 是一个标准库,同时也是一套核心库,库中定义了很多关键 API。
  • glibc 库知道针对不同体系结构调用系统调用的正确方法,它会根据体系结构应用程序的二进制接口设置用户进程传递的参数,来准备系统调用。
  • 然后,glibc 库调用软件中断指令(SWI) ,这个指令通过更新 CPSR 寄存器将模式改为超级用户模式,然后跳转到地址 0x08 处。
  • 到目前为止,整个过程仍处于用户态下,在执行 SWI 指令后,允许进程执行内核代码,MMU 现在允许内核虚拟内存访问
  • 从地址 0x08 开始,进程执行加载并跳转到中断处理程序,这个程序就是 ARM 中的 vector_swi()
  • 在 vector_swi() 处,从 SWI 指令中提取系统调用号 SCNO,然后使用 SCNO 作为系统调用表 sys_call_table 的索引,调转到系统调用函数。
  • 执行系统调用完成后,将还原用户模式寄存器,然后再以用户模式执行。

9.什么是内核

在计算机中,内核是一个计算机程序,它是操作系统的核心,可以控制操作系统中所有的内容。内核通常是在 boot loader 装载程序之前加载的第一个程序。

boot loader 又被称为引导加载程序,能够将计算机的操作系统放入内存中。在电源通电或者计算机重启时,BIOS 会执行一些初始测试,然后将控制权转移到引导加载程序所在的主引导记录(MBR)

10.什么是实时系统

实时操作系统对时间做出了严格的要求,实时操作系统分为两种:硬实时和软实时

硬实时操作系统规定某个动作必须在规定的时刻内完成或发生,比如汽车生产车间,焊接机器必须在某一时刻内完成焊接,焊接的太早或者太晚都会对汽车造成永久性伤害。

软实时操作系统虽然不希望偶尔违反最终的时限要求,但是仍然可以接受。并且不会引起任何永久性伤害。比如数字音频、多媒体、手机都是属于软实时操作系统。

你可以简单理解硬实时和软实时的两个指标:是否在时刻内必须完成以及是否造成严重损害

11.Linux 操作系统的启动过程

当计算机电源通电后,BIOS会进行开机自检(Power-On-Self-Test, POST),对硬件进行检测和初始化。因为操作系统的启动会使用到磁盘、屏幕、键盘、鼠标等设备。下一步,磁盘中的第一个分区,也被称为 MBR(Master Boot Record) 主引导记录,被读入到一个固定的内存区域并执行。这个分区中有一个非常小的,只有 512 字节的程序。程序从磁盘中调入 boot 独立程序,boot 程序将自身复制到高位地址的内存从而为操作系统释放低位地址的内存。

复制完成后,boot 程序读取启动设备的根目录。boot 程序要理解文件系统和目录格式。然后 boot 程序被调入内核,把控制权移交给内核。直到这里,boot 完成了它的工作。系统内核开始运行。

内核启动代码是使用汇编语言完成的,主要包括创建内核堆栈、识别 CPU 类型、计算内存、禁用中断、启动内存管理单元等,然后调用 C 语言的 main 函数执行操作系统部分。

这部分也会做很多事情,首先会分配一个消息缓冲区来存放调试出现的问题,调试信息会写入缓冲区。如果调试出现错误,这些信息可以通过诊断程序调出来。

然后操作系统会进行自动配置,检测设备,加载配置文件,被检测设备如果做出响应,就会被添加到已链接的设备表中,如果没有相应,就归为未连接直接忽略。

配置完所有硬件后,接下来要做的就是仔细手工处理进程0,设置其堆栈,然后运行它,执行初始化、配置时钟、挂载文件系统。创建 init 进程(进程 1 )守护进程(进程 2)

init 进程会检测它的标志以确定它是否为单用户还是多用户服务。在前一种情况中,它会调用 fork 函数创建一个 shell 进程,并且等待这个进程结束。后一种情况调用 fork 函数创建一个运行系统初始化的 shell 脚本(即 /etc/rc)的进程,这个进程可以进行文件系统一致性检测、挂载文件系统、开启守护进程等。

然后 /etc/rc 这个进程会从 /etc/ttys 中读取数据,/etc/ttys 列出了所有的终端和属性。对于每一个启用的终端,这个进程调用 fork 函数创建一个自身的副本,进行内部处理并运行一个名为 getty 的程序。

getty 程序会在终端上输入

login:

等待用户输入用户名,在输入用户名后,getty 程序结束,登陆程序 /bin/login 开始运行。login 程序需要输入密码,并与保存在 /etc/passwd 中的密码进行对比,如果输入正确,login 程序以用户 shell 程序替换自身,等待第一个命令。如果不正确,login 程序要求输入另一个用户名。

整个系统启动过程如下


本博客所有文章除特别声明外,均采用 CC BY-SA 4.0 协议 ,转载请注明出处!